A Computational Model of Risk-Context-Dependent Inductive Reasoning Based on a Support Vector Machine
نویسندگان
چکیده
A computational model of cognitive inductive reasoning that accounts for risk context effects is proposed. The model is based on a Support Vector Machine (SVM) that utilizes the kernel method. Kernel functions within the model are assumed to represent the functions of similarity computations based on distances between premise entities and conclusion entities in inductive reasoning arguments. Multipliers related to the kernel functions have the role of adjusting similarities and can explain rating shifts between two different risk contexts. Model fitting data supports the SVM-based model with kernel functions as a model of inductive reasoning in risk contexts. Finally, the paper discusses how the multipliers for kernel functions provide a satisfactory cognitive theoretical account of similarity adjustment.
منابع مشابه
Risk Context Effects in Inductive Reasoning: An Experimental and Computational Modeling Study
Mechanisms that underlie the inductive reasoning process in risk contexts are investigated. Experimental results indicate that people rate the same inductive reasoning argument differently according to the direction of risk aversion. In seeking to provide the most valid explanation of this, two kinds of models based on a Support Vector Machine (SVM) that process different knowledge spaces are p...
متن کاملA Neural Network Model Based on Support Vector Machine for Conceptual Cost Estimation in Construction Projects
Estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. This estimation has a major impact on the success of construction projects. Indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. The purpose of this paper is to introduce an intelligent model to im...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملSustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm
For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008